Pure Mathematics 2

Exercise 6B

1 a $\sin 135^{\circ}=+\sin 45^{\circ}$
(135° is in the second quadrant
at 45° to the horizontal.)
So $\sin 135^{\circ}=\frac{\sqrt{2}}{2}$
b $\sin (-60)^{\circ}=-\sin 60^{\circ}$
$\left(-60^{\circ}\right.$ is in the fourth quadrant
at 60° to the horizontal.)
So $\sin \left(-60^{\circ}\right)=-\frac{\sqrt{3}}{2}$
c $\sin \left(\frac{11 \pi}{6}\right)=-\sin \left(\frac{\pi}{6}\right)$
($\sin \left(\frac{11 \pi}{6}\right)$ is in the fourth quadrant, at $\left(\frac{\pi}{6}\right)$ to the horizontal.)
So $\sin \left(\frac{11 \pi}{6}\right)=-\sin \left(\frac{\pi}{6}\right)=-\frac{1}{2}$
d $\sin \left(\frac{7 \pi}{3}\right)=\sin \left(\frac{\pi}{3}\right)$
($\sin \left(\frac{7 \pi}{3}\right)$ is in the first quadrant, at $\left(\frac{\pi}{3}\right)$ to the horizontal.)
So $\sin \left(\frac{7 \pi}{3}\right)=\sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}$
e $\sin \left(-300^{\circ}\right)=+\sin 60^{\circ}$
$\left(-300^{\circ}\right.$ is in the first quadrant
at 60° to the horizontal.)
So $\sin \left(-300^{\circ}\right)=\frac{\sqrt{3}}{2}$
f $\cos 120^{\circ}=-\cos 60^{\circ}$
(120° is in the second quadrant
at 60° to the horizontal.)
So $\cos 120^{\circ}=-\frac{1}{2}$
$1 \mathrm{~g} \cos \left(\frac{5 \pi}{3}\right)=\cos \left(\frac{\pi}{3}\right)$
($\left(\frac{5 \pi}{3}\right)$ is in the fourth quadrant, at $\left(\frac{\pi}{3}\right)$ to the horizontal.)
So $\cos \left(\frac{5 \pi}{3}\right)=\cos \left(\frac{\pi}{3}\right)=\frac{1}{2}$
h $\cos \left(\frac{5 \pi}{4}\right)=-\cos \left(\frac{\pi}{4}\right)$
($\left(\frac{5 \pi}{4}\right)$ is in the third quadrant, at $\left(\frac{\pi}{4}\right)$ to the horizontal.)
So $\cos \left(\frac{5 \pi}{4}\right)=-\cos \left(\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}$
i $\quad \cos \left(-\frac{7 \pi}{6}\right)=-\cos \left(\frac{\pi}{6}\right)$
$\left(-\frac{7 \pi}{6}\right)$ is in the second quadrant, at $\left(\frac{\pi}{6}\right)$ to the horizontal.)
So $\cos \left(-\frac{7 \pi}{6}\right)=-\cos \left(\frac{\pi}{6}\right)=-\frac{\sqrt{3}}{2}$
j $\cos 495^{\circ}=-\cos 45^{\circ}$
(495° is in the second quadrant at 45° to the horizontal.)
So $\cos 495^{\circ}=-\frac{\sqrt{2}}{2}$
k $\tan 135^{\circ}=-\tan 45^{\circ}$
(135° is in the second quadrant at 45° to the horizontal.)
So $\tan 135^{\circ}=-1$
l $\tan \left(-225^{\circ}\right)=-\tan 45^{\circ}$
(-225° is in the second quadrant
at 45° to the horizontal.)
So $\tan \left(-225^{\circ}\right)=-1$

1 m $\tan \left(\frac{7 \pi}{6}\right)=\tan \left(\frac{\pi}{6}\right)$
$\left(\left(\frac{7 \pi}{6}\right)\right.$ is in the third quadrant
the horizontal.)
So $\tan \left(\frac{7 \pi}{6}\right)=\tan \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{3}$
n $\tan 300^{\circ}=-\tan 60^{\circ}$
(300° is in the fourth quadrant
at 60° to the horizontal.)
So $\tan 300^{\circ}=-\sqrt{3}$
o $\tan \left(-\frac{2 \pi}{3}\right)=\tan \left(\frac{\pi}{3}\right)$
$\left(-\frac{2 \pi}{3}\right)$ is in the third quadrant at $\left(\frac{\pi}{3}\right)$ to the horizontal.)
So $\tan \left(-\frac{2 \pi}{3}\right)=\tan \left(\frac{\pi}{3}\right)=\sqrt{3}$

Challenge

a i $\tan 30^{\circ}=\frac{1}{C E}$

$$
\begin{aligned}
C E= & \frac{1}{\tan 30^{\circ}} \\
& =\frac{1}{\frac{\sqrt{3}}{3}} \\
& =\frac{3}{\sqrt{3}} \\
& =\frac{3 \sqrt{3}}{3} \\
& =\sqrt{3}
\end{aligned}
$$

ii Using Pythagoras' theorem

$$
\begin{aligned}
C D^{2} & =1^{2}+\sqrt{3}^{2} \\
C D & =\sqrt{1+3} \\
C D & =2
\end{aligned}
$$

iii Using Pythagoras' theorem on the isosceles triangle $A B C$

$$
\begin{aligned}
& A B^{2}+B C^{2}=(1+\sqrt{3})^{2} \\
& A B=B C \text { so } B C^{2}+B C^{2}=(1+\sqrt{3})^{2} \\
& 2 B C^{2}=4+2 \sqrt{3} \\
& B C^{2}=2+\sqrt{3} \\
& B C=\sqrt{2+\sqrt{3}} \\
& \text { iv } D B=A B-A D \\
& \text { Using Pythagoras' theorem } \\
& A D=\sqrt{1^{2}+1^{2}} \\
& =\sqrt{2} \\
& D B=\sqrt{2+\sqrt{3}}-\sqrt{2}
\end{aligned}
$$

b Angle $B C D=45^{\circ}-30^{\circ}=15^{\circ}$
c i $\sin 15^{\circ}=\frac{D B}{C D}$

$$
=\frac{\sqrt{2+\sqrt{3}}-\sqrt{2}}{2}
$$

ii $\cos 15^{\circ}=\frac{B C}{C D}=\frac{\sqrt{2+\sqrt{3}}}{2}$

