Pure Mathematics 2

Exercise 6B

1 a $\sin 135^\circ = +\sin 45^\circ$ (135° is in the second quadrant at 45° to the horizontal.)

So
$$\sin 135^\circ = \frac{\sqrt{2}}{2}$$

b $\sin(-60)^{\circ} = -\sin 60^{\circ}$ $(-60^{\circ} \text{ is in the fourth quadrant})$ at 60° to the horizontal.)

So $\sin(-60^\circ) = -\frac{\sqrt{3}}{2}$ $\mathbf{c} \quad \sin\left(\frac{11\pi}{6}\right) = -\sin\left(\frac{\pi}{6}\right)$

 $\left(\sin\left(\frac{11\pi}{6}\right)\right)$ is in the fourth quadrant, at $\left(\frac{\pi}{6}\right)$ to the horizontal.) (11)

So
$$\sin\left(\frac{11\pi}{6}\right) = -\sin\left(\frac{\pi}{6}\right) = -\frac{1}{2}$$

d
$$\sin\left(\frac{7\pi}{3}\right) = \sin\left(\frac{\pi}{3}\right)$$

 $\left(\sin\left(\frac{7\pi}{3}\right) \text{ is in the first quadrant, at } \left(\frac{\pi}{3}\right)$
to the horizontal.)
So $\sin\left(\frac{7\pi}{3}\right) = \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$

2

e
$$\sin(-300^\circ) = +\sin 60^\circ$$

(-300° is in the first quadrant
at 60° to the horizontal.)

So
$$\sin\left(-300^\circ\right) = \frac{\sqrt{3}}{2}$$

 $\mathbf{f} \quad \cos 120^\circ = -\cos 60^\circ$ (120° is in the second quadrant at 60° to the horizontal.) So $\cos 120^\circ = -\frac{1}{2}$

1 g $\cos\left(\frac{5\pi}{3}\right) = \cos\left(\frac{\pi}{3}\right)$ $\left(\frac{5\pi}{3}\right)$ is in the fourth quadrant, at $\left(\frac{\pi}{3}\right)$ to the horizontal.) So $\cos\left(\frac{5\pi}{3}\right) = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$

Solution Bank

h $\cos\left(\frac{5\pi}{4}\right) = -\cos\left(\frac{\pi}{4}\right)$ $\left(\frac{5\pi}{4}\right)$ is in the third quadrant, at $\left(\frac{\pi}{4}\right)$ to the horizontal.)

Pearson

So
$$\cos\left(\frac{5\pi}{4}\right) = -\cos\left(\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$

- i $\cos\left(-\frac{7\pi}{6}\right) = -\cos\left(\frac{\pi}{6}\right)$ $\left(\left(-\frac{7\pi}{6}\right)\right)$ is in the second quadrant, at $\left(\frac{\pi}{6}\right)$ to the horizontal.) So $\cos\left(-\frac{7\pi}{6}\right) = -\cos\left(\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{2}$
- $i \cos 495^\circ = -\cos 45^\circ$ (495° is in the second quadrant at 45° to the horizontal.)

So $\cos 495^\circ = -\frac{\sqrt{2}}{2}$

- \mathbf{k} tan 135° = $-\tan 45^\circ$ (135° is in the second quadrant at 45° to the horizontal.) So $\tan 135^\circ = -1$
- $\tan\left(-225^\circ\right) = -\tan 45^\circ$ $(-225^{\circ} \text{ is in the second quadrant})$ at 45° to the horizontal.) So $tan(-225^{\circ}) = -1$

1

Pure Mathematics 2

1 m $\tan\left(\frac{7\pi}{6}\right) = \tan\left(\frac{\pi}{6}\right)$ $\left(\left(\frac{7\pi}{6}\right)\text{ is in the third quadrant at } \left(\frac{\pi}{6}\right)\text{ to the horizontal.}\right)$ So $\tan\left(\frac{7\pi}{6}\right) = \tan\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{3}$

n $\tan 300^\circ = -\tan 60^\circ$ (300° is in the fourth quadrant at 60° to the horizontal.) So $\tan 300^\circ = -\sqrt{3}$

•
$$\tan\left(-\frac{2\pi}{3}\right) = \tan\left(\frac{\pi}{3}\right)$$

 $\left(\left(-\frac{2\pi}{3}\right) \text{ is in the third quadrant at } \left(\frac{\pi}{3}\right) \text{ to the horizontal.}\right)$
So $\tan\left(-\frac{2\pi}{3}\right) = \tan\left(\frac{\pi}{3}\right) = \sqrt{3}$

Solution Bank

Challenge

a

i
$$\tan 30^\circ = \frac{1}{CE}$$

 $CE = \frac{1}{\tan 30^\circ}$
 $= \frac{1}{\frac{\sqrt{3}}{3}}$
 $= \frac{3}{\sqrt{3}}$
 $= \frac{3\sqrt{3}}{3}$
 $= \sqrt{3}$

ii Using Pythagoras' theorem $CD^2 - 1^2 + \sqrt{3}^2$

$$CD^{2} = 1^{2} + \sqrt{3}$$
$$CD = \sqrt{1+3}$$
$$CD = 2$$

iii Using Pythagoras' theorem on the isosceles triangle *ABC* $AB^2 + BC^2 = (1 + \sqrt{3})^2$

 $AB^{2} + BC^{2} = (1 + \sqrt{3})^{2}$ $AB = BC \text{ so } BC^{2} + BC^{2} = (1 + \sqrt{3})^{2}$ $2BC^{2} = 4 + 2\sqrt{3}$ $BC^{2} = 2 + \sqrt{3}$ $BC = \sqrt{2 + \sqrt{3}}$

- iv DB = AB ADUsing Pythagoras' theorem $AD = \sqrt{1^2 + 1^2}$ $= \sqrt{2}$ $DB = \sqrt{2 + \sqrt{3}} - \sqrt{2}$
- **b** Angle $BCD = 45^{\circ} 30^{\circ} = 15^{\circ}$

c i
$$\sin 15^\circ = \frac{DB}{CD}$$
$$= \frac{\sqrt{2 + \sqrt{3}} - \sqrt{2}}{2}$$

$$\mathbf{ii} \ \cos 15^\circ = \frac{BC}{CD} = \frac{\sqrt{2+\sqrt{3}}}{2}$$